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I. INTRODUCTION

The Nernst effect as well as the thermoelectric power is a
sensitive probe of the impurity scatterings in an electron sys-
tem. Recently, the Hall and the Nernst effects in graphene
have been studied experimentally at relatively strong1–3 and
moderate2 magnetic fields. Graphene in most of the experi-
ment devices is absorbed on the surface of SiO2. There are
strong evidences that the charged impurities in the substrate
are responsible for the carrier density dependences of the
electric conductivity4–10 and the Hall coefficient11 as mea-
sured in the experiments by Novoselov et al.12 At strong
magnetic field, the carriers are in the Landau quantized
states. In the interior of the system under the strong magnetic
field, the carriers are mostly localized around the charged
impurities. Though, the Hall effect seems weakly dependent
of the impurity scatterings because the current is most likely
conducted by the edge states that are not localized.13 The
standard Green’s function theory of many body system has
difficulty to treat the charge transport under scatterings of the
charged impurities in a strong magnetic field since it deals
with the bulk states of the electrons. On the other hand, at
weak magnetic field when the effect of Landau quantization
is negligible, the standard Green’s function theory should be
applicable for investigating the magnetothermoelectric trans-
ports of the electron system.

Based on the self-consistent Born approximation �SCBA�
for Dirac fermions under the charged impurity scatterings,
we have recently developed an electronic transport formal-
ism for graphene.9,11,14 It has been shown that the experimen-
tally measured electric conductivity, the inverse Hall
coefficient12 and the thermoelectric power1–3 are successfully
explained by our approach. In this work, along the same
approach, we study the Nernst effect of Dirac fermions as a
function of the carrier density under a weak magnetic field.
Though there exists no experimental measurements of the
Nernst effect in a weak field so far, we show that our ob-
tained results for the transverse thermoelectric power could
qualitatively compare with the experimental measurements2

in magnetic fields of moderate strength. We intend to exam-
ine to what extend the theory is valid in dealing with the
transport properties of graphene.

Meanwhile in doing this work, we present a derivation of
the transport coefficients of an electron system under the

temperature gradient and the electric and magnetic fields
being applied.

The model of electrons in graphene is established from its
energy band structure in the first Brillouin zone correspond-
ing to a honeycomb lattice. At low carrier concentration, the
low energy excitations of electrons in graphene can be
viewed as massless Dirac fermions.12,15–20 That is, the energy
linearly depends on the momentum around the two Dirac
points in the first Brillouin zone. Using the Pauli matrices �’s
and �’s to coordinate the electrons in the two sublattices �a
and b� of the honeycomb lattice and two valleys �around the
two Dirac points 1 and 2�, respectively, and suppressing the
spin indices for briefness, the Hamiltonian of the system is
given by

H = �
k

�k
†�vk� · �� �z − ���k +

1

V
�
kq

Vi�q��k−q
† �k, �1�

where �k
†= �cka1

† ,ckb1
† ,ckb2

† ,cka2
† � is the fermion operator, the

momentum k is measured from the center of each valley, v
��5.86 eV Å� is the velocity of electrons, � is the chem-
ical potential, V is the volume of system, and
Vi�q�=ni�−q�v0�q� is the charged impurity potential.11,14

Here, ni�−q� is the impurity density and v0�q� is given by the
Thomas-Fermi �TF� type

v0�q� = 2�e2/�q + qTF�� �2�

where qTF=4kFe2 /v� is the TF wave number, kF=��n �with
n as the carrier density� is the Fermi wave number, and �
�3 is the effective dielectric constant. For briefness, we
hereafter use units of v=�=kB�the Boltzmann constant�=1.

With SCBA,21,22 the Green’s function

G�k,�� = �� + � − k� · �� �z − 	�k,���−1

� g0�k,�� + gc�k,��k̂ · �� �z

and the self-energy 	�k ,�� of the single particles are deter-
mined by coupled integral equations.9 The diagonal and off-
diagonal parts, g0 and gc, respectively, of the Green’s func-
tion can be expressed as

g0,c�k,�� = �g+�k,�� 
 g−�k,���/2

with g
 as the upper and lower-band Green’s functions. Cor-
responding to the SCBA to the self-energy, the current vertex
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correction �x�k ,�1 ,�2� is given by the ladder-diagrams ap-
proximation as shown in Fig. 1�a�. �x�k ,�1 ,�2� is expanded
as

�x�k,�1,�2� = �
j=0

3

yj�k,�1,�2�Aj
x�k̂� , �3�

where A0
x�k̂�=�z�x, A1

x�k̂�=�x�� · k̂, A2
x�k̂�=�� · k̂�x, A3

x�k̂�
=�z�� · k̂�x�� · k̂, and yj�k ,�1 ,�2� are determined by four-
coupled integral equations.9 The functions yj describe how
the current vertex is renormalized by the impurity scatterings

from the bare one A0
x�k̂�.

II. FORMALISM

A. General formula of the transport coefficients

To study the Nernst effect of graphene, we consider the
electronic transport of Dirac fermions under weak in-plane
temperature gradient �T, electric potential �, and weak mag-
netic filed B� =�A� perpendicular to the graphene plane.
Here, A� is the vector potential. Since the temperature gradi-
ent �T is not a dynamic quantity, we cannot directly apply
the linear response theory �LRT� to treat the current response
to �T. To use LRT, one usually introduces a fictitious gravi-
tational potential �that couples with the Hamiltonian� follow-
ing the work of Luttinger and obtains the transport coeffi-
cients using the Einstein argument relating the currents
response to the external perturbations.23 Here, we present a
derivation from a microscopic point of view.

First, following the idea of Luttinger,23 suppose the sys-
tem with a variable temperature T�r� in locally equilibrium
everywhere in space. Specifically, consider the system is di-
vided into small cells but microscopically large enough. The
Hamiltonian of the cell at rj with chemical potential ��rj�
and temperature T�rj� are given by Hj =	cell−jdr��†�r��h�r�
−��rj����r� with h�r�=�� �z · �−i�+A� �+Vi�r� and ��r� as the
operator of Dirac fermions in real space. The distribution
function of the system is then given by

�1 = Z−1 exp
− �
j

Hj/T�rj�� , �4�

where Z is the normalization constant. Instead of considering
T�r�, we intend to find out an equivalent system determined
by an effective Hamiltonian Heff at constant temperature T0.
Its distribution function is

�2 = Z−1 exp�− Heff/T0� . �5�

From �1=�2, we have Heff=� jHjT0 /T�rj�. Suppose each cell
is macroscopically so small enough that the summation can
be replaced with integral over space. Heff reads

Heff =� dr��†�r��h�r� − ��r�� �
T0

T�r�
��r�

=� dr��†�r��h�r� + h�r� � ��r� + ��r� − �0���r�

� H��,��

with h�r� ���r�= h�r� ,��r�� /2 �here A ,B� is the anticom-
mutation relation between A and B� and

��r� = �0 − T0��r�/T�r� , �6�

��r� = T0/T�r� − 1. �7�

Here, T0 and �0 are the average temperature and chemical
potential, respectively. In the limit T�r�→T0, we have
���r� ,��r� ,��r��→ ��0 ,0 ,0�. By so doing, the system with
variable temperature T�r� in the local equilibrium state is
now described by an equivalent one under the potentials
���r� ,��r�� at constant T0 and �0.

Now we go back to the original problem: how do the
currents respond to the temperature gradient �T? Initially the
system is in the equilibrium state of H�0,0�. With gradually
turning on �T, the system H�0,0� becomes unstable because
the equilibrium state shifts to H���r� ,��r�� and thereby cur-
rents are produced. In the shifting process �0,0�
→ ���r� ,��r��, T0 and �0 are kept as constants.� The pertur-
bation here is the difference H�0,0�−H���r� ,��r��. This is
different from the usual case that the perturbations are due to
applying the external dynamic potentials and the initial equi-
librium state given by H�0,0� keeps unchanged.

Generally, in addition to �T, with the external scalar po-
tential � being applied, the system under consideration is
H�� ,0�. With respect to the equilibrium system H�� ,��, the
perturbation is H�� ,0�−H���r� ,��r��. Mathematically, we
have

H��,0� = H��,�� + H��,0� − H��,�� � H��,�� + H�

with H� given by

H� =� dr��†�r��− h�r� � ��r� + ��r� − ��r����r�

� � dr��†�r���1�r� + ��r� � �2�r����r� ,

where �1�r�=��r�−��r�−�0��r�, �2�r�=−��r�, and ��r�
=h�r�−�0. Here �1�r� and �2�r� take the role as the pertur-
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FIG. 1. �Color online� �a� Self-consistent Born approximation
for the Current vertex correction. �b� Diagrams for calculating the
function Pxy��1 ,�2�. The vertex j is associated with the vector
potential Aj. k
=k
q /2.
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bation potentials. In the limit �T→0, the negative forces
��1�r� and ��1�r� read

��1�r� = ����r� − ��r�� = eE� , �8�

��2�r� = − T0 � �1/T�r�� . �9�

Hereafter we denote �0 and T0 simply as � and T, respec-
tively, for briefness. According to LRT, we need to find out
the corresponding currents determined from the equations of
continuity. We here consider the relevant currents.

�i� For the potentials �1 and �2 �actually the correspond-
ing vector potentials�, the coupling currents to be determined
are J1�r� and J2�r�, respectively. One may consider to con-
vert the facts �†�r���r� �coupled to �1 in H�� and
�†�r���r���r� �coupled to �2� into the respective currents in
the picture of H�� ,�� �from which the perturbed system
evolves�. The resulted currents then contain the terms of �1
and �2. However, since H� is already linear in �1 and �2,
we just only need to consider them in the picture of H�0,0�.
For the unperturbed system H�0,0�, they are the particle cur-
rent and the heat current,

J�1�r� � J��r� = �†�r�j���r� , �10�

J�2�r� � J�Q�r� = �†�r���r� � j���r� . �11�

with j�=�� �z.
�ii� The currents of the reference �using subscript r� sys-

tem H�� ,�� itself can be obtained from the known results
of the particle current J�1r and energy current J�r

E in Ref. 23.
The results are

J�1r�r� = J��r� � �1 + ��r�� ,

J�2r�r� = J�r
E�r� − �J�1r�r�

= J�Q�r� � �1 + 2��r�� + ���r� + ���r�� � J��r� .

Their averages under H�� ,�� vanish.
�iii� The currents of the system H�� ,0� under physical

�using subscript p� observation are

J�1p�r� = J��r� , �12�

J�2p�r� = J�Q�r� + ��r� � J��r� . �13�

In terms of J�1r�r� and J�2r�r�, and �1 and �2, they read

J�1p�r� = J�1r�r� + J�1�r� � �2�r� ,

J�2p�r� = J�2r�r� + J�1�r� � �1�r� + 2J�2�r� � �2�r� .

The observed current densities are their averages in the sys-
tem H�� ,0�.

By the linear response theory, we have

�J�1p�r�� = �J�1�r� � �2�r��0 − K̂11 · ��1 − K̂12 · ��2,

�14�

�J�2p�r�� = �J�1�r� � �1�r��0 + 2�J�2�r� � �2�r��0 − K̂21 · ��1

− K̂22 · ��2, �15�

where �¯ �0 is the average under H�� ,��, K̂ij’s are 22
constant tensors �with respect to the directions of the coordi-
nates hereafter denoted by subscripts �x ,y� or �� ,��, the su-
perscripts 1 corresponding to particle current and 2 to heat
current� determined by the Kubo formula

K̂ij = − lim
�→0

Im�̂ij�� + i0�/� �16�

with �̂ij��+ i0� as the retarded response function. In the
bosonic Matsubara frequency �m, �̂ij reads

�̂ij�i�m� = −
1

V
�

0

�

d�ei�m��T�J�i���J� j�0��0 �17�

where J�i=	dr�J�i�r�. Now that �J�ip�r�� given by Eqs. �14� and
�15� are already explicitly linear in the perturbations �1 and
�2, in calculating the averages for the constants in Eqs. �14�
and �15�, the equilibrium point �� ,�� can be shifted to
�0,0�. To the first order of ��i, the term −�J�i�r� �� j�r��0’s in
Eqs. �14� and �15� are calculated as

�J�i�r� � � j�r��0 = �J�i�r� � �r� · �� j��0.

For the diagonal elements �Jix�r� �x�0�Mxx
i , we have

Mxx = �Jx�r� � x�0 = i��†�r����r�,x2���r��0/2 = 0,

Mxx
Q = �Jx

Q�r� � x�0 = i��†�r���2�r�,x2���r��0/4 = 0,

which can be shown by expanding ��r� in terms of the eigen-
states of ��r�. For the off-diagonal elements, �Jix�r� �y�0
�Mxy

i , we get

Mxy
i = �Jix�r�y�0,

=��Jix�r�y − Jiy�r�x��0/2,

=− Myx
i , �18�

because the system is invariant under rotation around the z
axis perpendicular to the plane. The element Mxy

i is the mag-
netization of the electrons. Substituting the results into Eqs.
�14� and �15�, we get

�J�1p�r�� = − N̂11 · ��1 − N̂12 · ��2, �19�

�J�2p�r�� = − N̂21 · ��1 − N̂22 · ��2, �20�

with

N̂11 = K̂11, �21�

N̂12 = K̂12 − M̂ , �22�

N̂21 = K̂21 − M̂ , �23�
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N̂22 = K̂22 − 2M̂Q. �24�

These forms have been obtained in Ref. 24 with a phenom-
enological approach using the Einstein argument and the
consideration classifying the transport components in each
kind of the local currents as the observable currents.

Though we consider the Dirac fermions here, the deriva-
tion above is valid for general electron systems.

For a noninteracting system such as the one considered
here, the average �¯ �0 under H�0,0� reduces, in principle,
to the independent single-particle problem. Using the bases
of single-particle states �n�� for a given impurity configura-

tion, one can obtain formally the expressions for N̂11 and

N̂12= N̂21 as

N̂11 = −� d�

2�
f����Ĉ��� , �25�

N̂12 = N̂21 = −� d�

2�
f�����Ĉ��� , �26�

with

Ĉ��� =
2�2

V � �
n�m

Re j�nmj�mn��� − �n���� − �m��
i

, �27�

where f����=df��� /d� with f��� the Fermi distribution
function, j�nm= �n�j��m�, �n is the eigenvalue of ��r� of the state
�n� and �¯ �i in Eq. �27� means the average over the impurity
configurations. These forms have been obtained in Ref. 25.
For the readers’ convenience, we give a derivation in the
Appendix. The compact form given by Eqs. �26� is so ob-

tained because of large cancellations between K̂12= K̂21 and

M̂. The tensors N̂11 and N̂12= N̂21 are thus related via the

function Ĉ���.
However, Eq. �27� is not a convenient formula to start

with. To proceed, one needs to derive Ĉ��� in terms of the
Green’s function. From Eq. �17�, carrying out the � integral,
we have

���
11 �i�m� =

1

�V
�

n
� dr�� dr�� Tr�G�r,r�,i�n�J1�

 G�r�,r,i�n + i�m�J1��i

�
1

�
�

n

P����n,�n + �m� , �28�

where G�r ,r� , i�n� is the Green’s function for a given impu-
rity distribution, �n is the fermionic Matsubara frequency,
�¯ �i again the average over the impurity configurations, and
the function P����1 ,�2� is so defined by the equation. Tak-

ing the analytical continuation �m→�+ i0, we have for N̂11,

N̂11 = −� d�

2�
f����Re�P̂��−,�+� − P̂��−,�−��

+� d�

2�
f���Re

�

���
�P̂���,�+� − P̂��+,������=�+

�� d�

2�
f����Re�P̂��−,�−� − P̂��−,�+� − Ŷ��+�� ,

where �
=�
 i0, and

Ŷ��� = �
−�

�

dz
�

�z�
�P̂�z�,z� − P̂�z,z���z�=z.

Therefore, we get

Ĉ��� = Re�P̂��−,�+� − P̂��−,�−� + Ŷ��+�� .

B. Hall and Nernst conductivities of Dirac fermions

The Nernst effect describes the response of the transverse
current to a temperature gradient �T in the presence of a
perpendicular magnetic field B but E� =0. It is reflected by the
Nernst conductivity Nxy

12. Here, we study it in the limit of B
→0.

In the limit of B→0, the elements Nxx
11 and Nxx

12 are inde-
pendent of the magnetic field. They are related to the electric
conductivity �=e2Nxx

11 and thermoelectric power S=
−Nxx

12 /eTNxx
11 which we have given in previous works.11,14

Though the element Nxy
11 was calculated previously for study-

ing the Hall coefficient, the function Cxy��� was not given
explicitly.11 To calculate Nxy

12, we here need to find out the
explicit expression for Cxy���.

As in the calculation of the Hall conductivity in the limit
of B→0,11 by introducing the vector potential via A� �r�
=A� �q�exp�iq� ·r�� with B� = iq� A� �q� and taking the limit q
→0, one obtains �xy

12�i�m� in terms of the average of the
multiplication of three current operators.26,27 As shown in
Fig. 1�b�, Pxy��1 ,�2� is obtained as

Pxy��1,�2� = lim
q→0

2e

V
�

k

Tr�x�k−,k+,�1,�2�

 �G�k+,�2��y�k+,�2,�1�V�k+,k−,�1�

+ V�k+,k−,�2��y�k−,�2,�1�G�k−,�1��� ,

where the factor 2 stems from the spin degeneracy, k


=k
q /2, V�k+ ,k− ,��=G�k+ ,���� �k+ ,k− ,� ,�� ·A� G�k− ,��,
and �x�k ,�1 ,�2���x�k ,k ,�1 ,�2� as given by Eq. �3�. The
vertex ���k− ,k+ ,�1 ,�2� satisfies the 44 matrix equation

���k−,k+,�1,�2� = �3�� +
1

V
�
k1

niv0
2�k − k1�G�k1

−,�1�

 ���k1
−,k1

+,�1,�2�G�k1
+,�2� . �29�

To find out the limit of q→0, we need to expand the right
hand side of Eq. �28� to the first order in q and then use B�

= iq� A� . The manipulation is tedious but elementary. We
only outline the key points in the derivation below.
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�i� The expansions of the Green’s function G�k
 ,�� and
the vertex functions ���k
 ,�1 ,�2� can be easily obtained by
definition. The most involved expansion is for the vertex
function �x�k− ,k+ ,�1 ,�2�. By expanding both sides of Eq.
�29� to the first order in q, one gets ���k− ,k+ ,�1 ,�2�
=���k ,�1 ,�2�+����k ,�1 ,�2� ·q� /2 with ����k ,�1 ,�2� deter-
mined by

����k,�1,�2� =
1

V
�
k�

niv0
2�k − k��G�k�,�1�����k�,�1,�2�

 G�k�,�2� −
1

V
�
k�

niv0
2�k − k��

 ��G�k�,�1����k�,�1,�2�G�k�,�2�

− G�k�,�1����k�,�1,�2� � G�k�,�2�� ,

�30�

where � means the gradient with respect to k�.
�ii� From the identity

1

V
�
kk�

ni���k + �k��v0
2�k − k���Tr�G�k,�1�����k,�1,�2�

 G�k,�2�G�k�,�2����k�,�2,�1�G�k�,�1�� = 0,

�31�

performing the integral by part in the left hand side of Eq.
�31� and using Eq. �30� and the equation for ���k ,�1 ,�2�,
we obtain

�
k

Tr����k,�1,�2���kG�k,�2����k,�2,�1�G�k,�1�

+ G�k,�2����k,�2,�1��kG�k,�1���

= − �
k

Tr��G�k,�1����k,�1,�2�G�k,�2�

− G�k,�1����k,�1,�2� � G�k,�2���k���k,�2,�1�� .

�iii� For V�k+ ,k− ,��, using Eq. �29�, we get the expansion

G�k+,�����k+,k−,�,��G�k−,��

=
�

�k�

G�k,�� + i�z�̂ · �b�k,��k̂�̂ − a�k,���̂k̂� · q� .

�32�

where � is the angle of k�, �̂ is the unit vector in � direction,
and the first term in the right hand of Eq. �32� comes from
the Ward identity G�k ,�����k ,� ,��G�k ,��=�G�k ,�� /�k�.
The coefficients a�k ,�� and b�k ,�� are determined by solv-
ing Eq. �30�. Since the final result depends on their combi-
nation a�k ,��+b�k ,���c�k ,��, the function c�k ,��
�z�k ,��+ �g0

2�k ,��−gc
2�k ,���X�k ,�� is determined by

following equations:

z�k,�� = �g0��k,��gc�k,�� − g0�k,��gc��k,����y0�k,�,��

− y3�k,�,��� − gc�k,��g0�k,���y0�k,�,��

+ y3�k,�,��� + 2gc�k,��y1�k,�,���/k ,

X�k,�� =
1

V
�
k�

niv0
2�k − k��z�k�,��

+ g+�k�,��g−�k�,��X�k�,��� ,

with g��k ,��=�g�k ,�� /�k.
Using the results given above, one gets a final expression

Pxy��1 ,�2�= �Z��1 ,�2�−Z��2 ,�1�� /2i with

Z��1,�2� =
2Be

V
�

k

Tr
G1�x,12� �G2

�kx

��y,21

�ky
−

�G2

�ky

��y,21

�kx
�

− ic�k,�1��x,12G2�y,21�z� ,

where �x,ij =�x�k ,�i ,� j� �and the same meaning for �y,ij�,
Gj =G�k ,� j�. Since Pxy��− ,�−�=0, we have Cxy���
=Im Z��− ,�+�+Re Yxy��+�, and

Re Yxy��� = �
−�

�

dz Im R�z�

with R���= �

���
�Z��� ,��−Z�� ,������=�.

Knowing the function Cxy���, we can calculate Nxy
11 and

the Nernst conductivity Nxy
12 according to Eqs. �25� and �26�,

respectively. Since we are interested in the low temperature
cases, we here give their expressions in the limit of T→0.
They are

Nxy
11 =

1

2�
Im Z�0−,0+� − �

0

� dz

2�
Re R�iz� , �33�

Nxy
12 =

�T2

6
Im
 �

��
Z��−,�+���=0 + R�0+�� , �34�

In obtaining Nxy
12, the use of the expanding Cxy����Cxy�0�

+�Cxy� �0� has been made. In addition, the z integral in
Re Yxy�0� reduces to the path-integral around the negative
axis �−� ,0�. Because R�z� is an analytical function �by defi-
nition� in the upper and lower z plane, respectively, the inte-
gral path has been deformed to the imaginary axis, giving
rise to the last term in Eq. �33�. The integral along the imagi-
nary axis is simple to handle for the numerical calculation
since there is no singularity in the Green’s function. If this
term is neglected, the expression for the Hall conductivity
�xy =e2Nxy

11 will reduce to the form as in the previous work.11

The fact that the contribution from this term is negligible
will be checked later. In analogous to the thermoelectric
power S=Ex / ��T�x, we define Sxy =Ex / ��T�y which de-
scribes the production of the transverse electric field due to a
temperature gradient in the absence of current flow. By set-
ting �J1p�r��=0 in Eq. �19�, Sxy is obtained as

Sxy = − �S�xy + eNxy
12/T�/� . �35�

Clearly, Sxy includes two parts. The quantity S�xy describe
the process for the response of the transverse electric field to
�T through the way: because there exists a longitudinal elec-
tric field �with the magnitude proportional to the thermoelec-
tric power S� due to the temperature gradient, the current
could flow transversely by the Hall process. In different to

NERNST EFFECT OF DIRAC FERMIONS IN GRAPHENE… PHYSICAL REVIEW B 81, 155457 �2010�

155457-5



this, eNxy
12 /T implies an additional transverse field due to a

transverse current response directly to �T.

III. RESULTS

The functions g0,c�k ,�� and yj�k ,�1 ,�2� and their deriva-
tives with respect to k and � are involved in the calculation.
In a recent work,14 we have described how to numerically
solve the corresponding integral equations to determine these
functions. In our numerical calculation, we take the impurity
density as ni=1.1510−3a−2 �with a as the lattice constant
of graphene� the same as in our previous works for repro-
ducing the experimental measurements of the electric con-
ductivity, the Hall coefficient and the thermoelectric
power.9,11,14

The numerical results for the Hall conductivity �xy and
the inverse Hall coefficient R−1=B�2 /�xy as functions of the
carrier concentration � �doped carrier per carbon atom� are
shown in Fig. 2. The calculations with and without the last
term in Eq. �33� for both results of R−1 and �xy �normalized
by �B in inset of Fig. 2� are almost indistinguishable. This
fact means that the contribution from the last term in Eq.
�33� is negligible small. The experimental data12 �symbols�
and the classical prediction R−1=−nec are also plotted in Fig.
2 for comparison. As we have stated previously, the diver-
gence of R−1 at �=0 stems from the vanishing of �xy while
the conductivity � remains finite.

At low T, the Nernst conductivity Nxy
12 is proportional to

T2. In Fig. 3, we depict eNxy
12 /T2B as a function of the elec-

tron doping concentration �. Because of the electron-hole
symmetry, Nxy

12 is even for �→−�. Nxy
12 comes mainly from

the first term in the square bracket in Eq. �34�. This is similar
to the case as in Nxy

11. The derivation �Z��− ,�+� /�� ��=0 is
very delicate. Here, it cannot be considered simply as
���xy��� /�� because the scattering potential here depends
strongly on the electron doping concentration. For compari-

son, we also depict the result for S�xy /TB in Fig. 3. In the
regime of � studied here, the magnitudes of both quantities
are overall the same. But at low �, eNxy

12 /T2B is bigger than
S�xy /TB. In the absence of the electric field, the transverse
current density is solely determined by Jx=−Nxy

12��T�y /T.
In Fig. 4, we show the transverse thermoelectric power

Sxy divided by TB as functions of � at the average impurity
densities ni=1.1510−3a−2 and ni=1.610−3a−2. Sxy is a
superposition of S�xy and eNxy

12 /T. As a result, Sxy is linear in
T and B. At large carrier doping, both of S�xy and eNxy

12 /T
have about the same contribution to Sxy. While at low dop-
ing, eNxy

12 /T is predominant. Sxy changes sign at low doping
because eNxy

12 /T does. The factor S�xy +eNxy
12 /T of Sxy de-

creases quickly as � decreasing at low � regime. Its slop
normalized by a negative constant ��−� /�, ��� at large �
and is flat at very low doping� is almost the behavior of Sxy.
The dip in Sxy corresponding to the maximum of the slop. So
far there exist no measurements of the Nernst effect of Dirac
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FIG. 2. �Color online� The inverse Hall coefficient R−1 �in unit
of 10−3 Tesla /Ohm� as a function of �. The solid �red� and dashed
�blue� lines correspond, respectively, to the calculations with and
without the contribution from the last term in Eq. �33� �Inset, the
corresponding results for �xy normalized by �B with B is in unit of
Tesla �T��. Dot-dashed line: classical result. Symbols: experimental
data �Ref. 12�.
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fermions in a weak magnetic field. But for the purpose to
make a qualitative comparison, the experimental results for
the transverse thermoelectric power of Ref. 2 with the mag-
netic fields B=1 Tesla �T� �squares� and 3 T �diamonds� are
plotted. To judge whether the magnetic field is weak or not,
we consider the ratio between the overall magnitude of spac-
ing �0=v�2eB /�c of the Landau level En= 
�0

��n� and the
Fermi energy EF= �4���1/2v /31/4a. The weak magnetic field
means that the ratio �0 /EF is much less than unity. Clearly,
for a magnetic field, this ratio is smaller at larger carrier
doping �. Here the ratio is about 0.35 for a doping level at
1.010−4 and B=1 T. Though the strengths of these mag-
netic fields could not be regarded as weak, the data indicate
a tendency toward to the theoretical prediction as the mag-
netic field is decreasing.

We note that the present calculations fit nicely to the Hall
data �shown in Fig. 2� but not to the Nernst effect �the trans-
verse thermoelectric power shown in Fig. 4�. As is known,
the Nernst effect is a more sensitive probe of the impurity
scatterings than the electric conductivity and the Hall con-
ductivity since it detects not only the current-current corre-
lation function but also its derivative. One of the reasons for
the discrepancy between the present calculation and the ex-
periment measurement might be due to other possible
sources of impurity scatterings besides the charged scatters.
Because of the sensitive dependency of the impurity scatter-
ings, the measurements of the Nernst effect as well as the
longitudinal thermoelectric power may vary from sample to
sample. As we noted from the data for the latter one, there
are obvious differences between the experimental results �see
Fig. 8 of Ref. 14� due to other impurity scatterings. For the
present case besides the charged impurities, the short range
scatters may be also relevant for the physics close to the
Dirac point. However, it is not the predominant component
because it is not able to produce the linear carrier density
dependency of the electric conductivity.

The present calculation is based on the assumption that
the impurities are randomly distributed. Actually, at low car-
rier doping, graphene is an inhomogeneous system due to the
impurity correlations in the substrate as observed by
experiment.28–31 It seems there exist the electron and hole
puddles. Nonetheless, in each puddle, the average number of
the carrier is less than unity �or in the order of unity�. More-
over, the mean free path of the electrons is much longer than
the length scale ��tens nanometers� of the puddles. Within a
mean free path, a carrier can transfer through many such
puddles. The puddles can be thus regarded as the micro-
scopic wrinkles. In addition, at low carrier concentration,
there exists significant quantum coherence between the
upper- and lower-band states,32 resulting in the minimum
electric conductivity,9,33–35 the unconventional behaviors of
the inverse Hall conductivity11,12 and the thermoelectric
power.1–3,14 Therefore, the carrier must be treated quantum
mechanically and the physics by the present approach is
qualitatively correct. However, at very low carrier doping,
because of weak screening, the charged impurity scatterings
are very strong and the SCBA thereby becomes quantita-
tively incorrect. The validity of SCBA can be judged by the
ratio of the Fermi level broadening � and the Fermi energy
EF. The SCBA is good if � /EF�1. In the present study for

the impurity density ni=1.1510−3a−2, � /EF�1 when �
�1.010−4.36 Below this carrier doping, the results given
here have only the qualitative meanings.

Finally, we compare our calculation with the semiclassical
Boltzmann theory. By the Boltzmann theory within the re-
laxation time-� approximation, the function gk describing the
difference between the disturbed distribution function and
the Fermi distribution function f is determined by37

gk = �
� f

��k
v� · � �k

T
� T + eE�� + �e�v�  B� � · �kgk �36�

using units of c=�=1 again. Here �k=vk−� for electrons in
graphene. From Eq. �36�, one obtains

� = �ve2kF/� ,

�xy = B�2v2e3/� ,

Nxx
12 = T2��/3.

The inverse Hall coefficient is B�2 /�xy =ne. The Mott
relation38 is given by Nxx

12=T2�2�� /3e2 with ��=�e2 /�.
However, using the Mott relation, one obtains zero Nernst
conductivity Nxy

12=0 because �xy is constant independent of
the chemical potential �. This is different from the present
result that the Nernst conductivity is in the order of S�xyT /e
as shown in Fig. 3.

IV. SUMMARY

In summary, we have derived the formula for the transport
coefficients for the Dirac fermions in graphene in the pres-
ence of the temperature gradient, the electric field and the
magnetic field. The derivation is valid for general electron
systems. It is different from the usual perturbation process
with the external dynamic potentials applied �in that case the
original equilibrium state is unchanged� since the perturba-
tion due to turning on the temperature gradient shifts the
equilibrium state. The physical observed system is in the
perturbed state with respect to this equilibrium state.

On the basis of self-consistent Born approximation, we
have studied the Nernst effect of the Dirac fermions under
the charged impurity scatterings and weak magnetic field in
graphene. The transverse thermoelectric power is closely re-
lated with the Hall conductivity and the longitudinal thermo-
electric power for which the theory has been shown to be in
good agreement with the experiment. The Nernst conductiv-
ity is dealt with the similar approach as for the Hall conduc-
tivity. The present calculation is a prediction to the Nernst
conductivity of the Dirac fermions in graphene under a weak
magnetic field.
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APPENDIX: DERIVATION OF EQS. (25) AND (26)

We here give a derivation of Eqs. �25� and �26�. Consider
the response function �AB��� defined by

�AB��� = −
1

V
�T�A���B�0��0, �A1�

where A and B �of Hermitians� can be either the current or
the heat current operator. Using the basis of the single-
particle states �n��, we have

A��� =� dr�eH�0,0���†�r�a�r���r�e−H�0,0��

= �
nm

e��n−�m��anmcn
†cm, �A2�

where anm= �n�a�m� and cn
† �cn� creates �annihilates� a particle

in state �n�. The function �AB��� is written as

�AB��� = −
1

V��
n

fnannbnn + �
n�m

fn�1 − fm�e��n−�m��anmbmn�
i

,

where fn= �cn
†cn� is the Fermi distribution function. Taking

the Fourier transform, we get

�AB�i��� = −
1

V��
n

fnannbnn���,0

− �
n�m

fn − fm

i�� + �n − �m
anmbmn�

i

, �A3�

where �=1 /T. Taking the analytical continuation i��→�
+ i0 �for which the first term in the braces in Eq. �A3� can be
disregarded because of ���0�, we have

Im �AB,r��� =
1

V
Im� �

n�m

fn − fm

� + �n − �m + i0
anmbmn�

i

=
1

V� �
n�m

�fn − fm�
 Im�anmbmn�P

� + �n − �m

− � Re�anmbmn���� + �n − �m���
i

=
1

V� �
n�m

�fn − fm�
 Im�anmbmn��P

�2 − ��n − �m�2

− � Re�anmbmn���� + �n − �m���
i

, �A4�

where P means taking the principle value in the summation,
and in the P term the exchange n↔m and the use of
Im�amnbnm�=−Im�anm

† bmn
† �=−Im�anmbmn� have been made in

the last equality. Substituting the result of Eq. �A4� into Eq.
�16�, we obtain

KAB =
1

V� �
n�m


Im�anmbmn�
�fn − fm�P

��n − �m�2

− � Re�anmbmn�fn����n − �m���
i

, �A5�

where fn�=dfn /d�n.
Note first, the desired forms given by Eqs. �25� and �26�

are obtained from the contribution from the last term in the
square brackets in Eq. �A5�.

Second, for the diagonal elements, the first term in the
square brackets in Eq. �A5� vanishes. In the present case, A
and B are vectors. For the diagonal elements, ax,nm�bx,nm
and ax,nmbx,mn is real.

Therefore, in following, we will consider only the contri-
bution from the first term in the square brackets in Eq. �A5�
for the case of off-diagonal elements. Denote it as

R�A,B� =
1

V
�

n�m

�fn − fm�P

��n − �m�2 Im�anmbmn� , �A6�

dropping the symbol of the average �¯ �i for briefness. We
only need to prove that the off-diagonal element of R�A ,B� is
cancelled by the corresponding matrix element of Mxy

i given
by Eq. �18�.

�i� A=B=J�. Using j�= i���r� ,r��, R�J� ,J�� reads

R�Jx,Jy� =
1

V
�

n�m

�fn − fm�Im�xnmymn�

=
1

V
�

n

fn Im�n��x,y��n� = 0.

�ii� A=J� and B=J�Q with J�Q�r�= j��r� ,��r�� /2. Using j�nm
Q

= j�nm��n+�m� /2= ir�nm��n
2−�m

2 � /2, one gets

R�Jx,Jy
Q� =

1

2V
�

n�m

��n + �m��fn − fm�Im�xnmymn� .

On the other hand, we note

− Mxy = −
1

2V
�
nm

fn�jx,nmymn − jy,nmxmn�

=
1

V
�
nm

fn��n − �m�Im�xnmymn�

=
1

2V
�
nm

�fn + fm���n − �m�Im�xnmymn� ,

where we have made use of the exchange n↔m in the last
equality. Therefore, we have

R�Jx,Jy
Q� − Mxy =

1

V
�
nm

�fn�n − fm�m�Im�xnmymn�

=
1

V
�

n

fn�n Im�n��x,y��n� = 0. �A7�

�iii� The case of A=J�Q and B=J� is the same as �ii� and
N12=N21.
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